

Math Exam given for the 2025 general admission process at Univ. of Tokyo

Problems for those who wish to major in Science, Engineering, etc. (150 min.)

1 Let $A(0,0)$, $B(0,1)$, $C(1,1)$, $D(1,0)$ be points on a coordinate plane. Let t satisfy $0 < t < 1$, P_t, Q_t, R_t be the points on the segments AB, BC, CD , respectively, such that $\frac{AP_t}{P_t B} = \frac{BQ_t}{Q_t C} = \frac{CR_t}{R_t D} = \frac{t}{1-t}$, S_t, T_t be the points on the segments $P_t Q_t, Q_t R_t$, respectively, such that $\frac{P_t S_t}{S_t Q_t} = \frac{Q_t T_t}{T_t R_t} = \frac{t}{1-t}$, and U_t be the point on the segment $S_t T_t$ such that $\frac{S_t U_t}{U_t T_t} = \frac{t}{1-t}$. Furthermore, let A, D be U_0, U_1 , respectively.

- (1) Find the coordinates of the point U_t .
- (2) Find the area of the domain surrounded by the segment AD and the curve traced by the point U_t , $0 \leq t \leq 1$.
- (3) Let a satisfy $0 < a < 1$. Express the length of the curve traced by the point U_t , $0 \leq t \leq a$, as a polynomial in a .

2 (1) Prove $\ln x \leq x-1$ for $x > 0$. (2) Find $\lim_{n \rightarrow \infty} n \int_1^2 \ln\left(\frac{1+x^n}{2}\right) dx$.

3 A parallelogram $ABCD$ satisfies $\angle ABC = \frac{\pi}{6}$, $AB = a$, $BC = b$, and $a \leq b$. Consider a rectangle with the condition:

The vertices A, B, C, D lie on the edges EF, FG, GH, HE , respectively, where an edge includes its ends.

Let S be the area of the rectangle $EFGH$.

- (1) Express S in terms of a, b and $\theta = \angle BCG$.
- (2) Express the maximum of S in terms of a and b .

4 A square number is the square of a nonnegative integer.

Let a be a positive integer, and $f_a(x) = x^2 + x - a$.

- (1) Let n be a positive integer. Prove that $n \leq a$, if $f_a(n)$ is a square number.
- (2) Denote by N_a the number of positive integers n such that $f_a(n)$ is a square number.

Prove that the conditions (i), (ii) below are equivalent:

- (i) $N_a = 1$
- (ii) $4a+1$ is a prime.

5 There're n (≥ 2) cards numbered 1 through n , and we arrange them in a row.

Consider the following operation (T_i) , where $i=1, 2, \dots$, or $n-1$.

(T_i) If the number of the i th card (from the left end) is greater than that of the $(i+1)$ th one, we switch these 2 cards. Otherwise, we do nothing.

Suppose that the number of the i th card is A_i ($1 \leq i \leq n$) in the beginning, and it turns i for $i=1, \dots, n$ by $(n-1)$ operations $(T_1), (T_2), \dots, (T_{n-1})$ followed by $(n-1)$ operations $(T_{n-1}), \dots, (T_2), (T_1)$.

- (1) Prove that at least one of A_1, A_2 is not greater than 2.

- (2) Let C_n be the number of possible arrangement $A_1 \dots A_n$.

For $n \geq 4$, express C_n in terms of C_{n-1} and C_{n-2} .

6 On a plane of complex numbers, let C be the circle centered at $\frac{1}{2}$ with radius $\frac{1}{2}$, minus zero.

- (1) For $z \in C$, prove that the real part of $\frac{1}{z}$ is 1.

- (2) If $\alpha, \beta \in C$ and they're distinct, express the domain in which $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ moves around.

- (3) If γ is a complex number belonging to the complement of the domain in (2), find the maximum and the minimum of the real part of $\frac{1}{\gamma}$.